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Abstract
Human understanding of language is robust to
different word choices as far as they repre-
sent similar semantic concepts. To what extent
does our human intuition transfer to language
models, which represent all subwords as dis-
tinct embeddings? In this work, we take an
initial step on measuring the role of shared se-
mantics among subwords in the encoder-only
multilingual language models (mLMs). To this
end, we form “semantic tokens” by merging
the semantically similar subwords and their
embeddings, and evaluate the updated mLMs
on 5 heterogeneous multilingual downstream
tasks. Results show that the general shared se-
mantics could get the models a long way in
making the predictions on mLMs with differ-
ent tokenizers and model sizes. Inspections on
the grouped subwords show that they exhibit a
wide range of semantic similarities, including
synonyms and translations across many lan-
guages and scripts. Lastly, we found the zero-
shot results with semantic tokens are on par or
even better than the original models on certain
classification tasks, suggesting that the shared
subword-level semantics may serve as the an-
chors for cross-lingual transferring.

1 Introduction

In current language models, all subwords are repre-
sented equally and individually in the word embed-
dings, yet is that truly necessary? Empirically, hu-
man’s perception on the sentence is robust regard-
ing interchanging words under the same or similar
semantic concept (Figure 1). The most obvious
examples are the semantically equivalent words
in different languages: code-switching “they” to
“они”, or “tomatoes” to “tomate”.1 The sentence
meaning is preserved for people who understand
both languages. The robustness may also apply to
some of the inflectional changes: swapping “toma-
toes” into “tomato”, while losing the plural form,
∗Work is done during student researcher at GDM.

1 “они”: “they” in Russian; “tomate”: “tomato” in Spanish
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Figure 1: Words with similar meanings or inflectional
changes fall under semantic concepts as indicated by
the colors. The sentence “They collected the rotted
tomatoes.” is found from XNLI.

still conveys the overall sentence meaning. Finally,
even the words are replaced into ones that are only
vaguely related in semantics, e.g., from “rotted” to
“wrong”, resulting in a phrase that is ambiguous
and almost incorrect: “wrong tomatoes”, the sen-
tence meaning could still be somewhat speculated
and in line with the original sentence.

Given these words contribute similarly to the
general sentence understanding in human percep-
tion, in this work, we take an initial step towards
measuring the role of shared semantics among
subwords in the multilingual language models.
Specifically, we investigate to which degree the
semantically-similar subwords could share the
same word embedding. Based on the existing mul-
tilingual language models (mLM), we form the
“semantic tokens” by grouping the subwords based
on the similarity of their word embeddings, which
henceforth share the same “semantic embedding”.2

The updated mLMs are evaluated on 5 downstream
tasks, which cover 30 languages in total and include
both classification and embedding tasks.
2 We understand that the formed semantic tokens are not per-
fect and may contain subwords of loosely related or unrelated
meanings. On one hand, we provide inspection on the formed
semantic tokens in Figure 8 and 13, which suggest that the
grouped tokens could reflect coherent semantics. On the other
hand, we consider our results as a lowerbound, where tech-
niques that form more accurate semantic tokens are likely to
further improve the downstream effectiveness.
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Figure 2: Illustrations of the operations that modify the word embeddings and the pipelines composed of these op-
erations. “Cont. Pt”: Continual Pretraining, whose illustration is skipped due to its prevalence. The colored rows
represent the embeddings of the subwords and the coordinate depicts their spacial distances. The shapes indicate
the underlying semantics and the colors indicate the languages of the subwords. Under the “PIPELINES”, the solid
boxes denote the required operations that are core to the pipeline or essential to the model functionality; the dashed
boxes denote the optional operations that are only to provide additional improvement. Better viewed in color.

We find that with a small number of semantic
tokens and their embeddings, the mLMs could pre-
serve a majority of the downstream effectiveness:
semantic tokens in 5% of the original vocabulary
size achieve 90% of the effectiveness on classi-
fication tasks, and 20% of the semantic tokens
achieve over 85% effectiveness on the embedding
tasks. These suggest that while nuances exist in the
meaning of each subword, the general semantics
representations could get the models a long way in
prediction-making.

Next, we eliminate the confounding factor of em-
bedding size: While forming the semantic tokens,
the number of the word embedding parameters is
also reduced. Does the change in effectiveness
reflect the changes on subwords or the reduced em-
bedding parameters? We thus apply the semantic
grouping on the word embeddings with reduced
parameter size via truncating the embedding di-
mension, finding that the same observation persists
even when the parameters could not be further re-
duced via dimension reduction, This suggests that
the above results are not confounded by the embed-
ding size but a result of the semantic grouping.

Additional experiments suggest that the finding
generalizes to the multilingual models with differ-
ent tokenizers and model sizes. Inspection shows
that the grouped subwords indeed exhibit a wide
range of semantic similarities: numbers, punctua-
tions, synonyms, and translations across multiple
languages under different scripts. Lastly, we found
that the zero-shot results on certain classification
tasks with semantic tokens are on par or even better
than the original models, suggesting that the shared
subword-level semantics may serve as the transfer
anchors for the cross-lingual generalization.

Our contributions are as follows: (1) We found
that mLMs could preserve a majority of the down-
stream effectiveness with a small number of shared
subword-level semantics; (2) We show that the
findings are general across the mLMs with different
tokenizers, model sizes, and other aspects; (3) In-
spection reveals that the grouped subwords exhibit
a wide range of semantic similarities; (4) The zero-
shot results suggest that the shared subword-level
semantics may serve as the transfer anchors for
cross-lingual generalization.

2 Operations and Pipelines

The experiment setting in this paper can be cate-
gorized into several pipelines composed of multi-
ple independent operations, centering on semantic
grouping. All operations except the continual pre-
training only affect the vocabulary V and word
embeddings E ∈ R(|V |,D), where |V | is the vocab-
ulary size and D is the initial word embeddings
dimension. Figure 2 illustrates all operations ex-
cept the continual pretraining due to its prevalence,
as well as the pipelines composed of the operations.

2.1 Semantic Grouping (SG)

Given the vocabulary V and its word embeddings
E, multiple semantically similar subwords are
grouped as a single “semantic” token and hence-
forth share the same word embedding. The em-
bedding of the semantic token is then initialized
by the averaged embeddings of grouped words.
That is, after the grouping, the updated LM has a
new vocabulary V ′ composed of semantic tokens
and new word embeddings E

′
vocab ∈ R(|V ′|,D),

where |V ′| < |V |. We define the grouping ratio as
rG = |V ′|/|V |.



Dataset Name Task Name Task Type Granularity # L. Languages

MasakhaNER NER classification word-level 10 am, ha, ig, rw, lg, sw, wo, yo, luo, pcm

XNLI NLI classification sentence-level 15 ar, bg, de, el, en, es, fr, hi, ru, sw, th, tr, ur, vi, zh

TyDi QA QA classification sentence-level 11 ar bn, en, fi, d, ja, ko, ru, sw, te, th

MIRACL
P Retrieval classification

sentence-level 18
ar, bn, de, en, es, fa, fi, fr, hi, id, ja, ko, ru, sw, te,
th, yo, zhP Reranking embedding

Table 1: Downstream Tasks and Datasets. “P Retrieval”: Passage Retrieval; “P Reranking”: Passage Reranking.

K-Means. Subwords are grouped via K-Means
based on the cosine distance of their word em-
beddings. We chose K-Means due to its flexibil-
ity on the produced number of groups |V ′|, and
use the cosine distance as experiments show that
it has better performance especially at high word
embeddings dimension (Ap. E). The inspections
on the groups show that they could reflect coher-
ent semantics (Figure 8 and 13). In this work,
we set |V ′| that corresponds to grouping ratio
rG ∈ {5%, 10%, 20%, 40%}.3

First-k. As the baseline, we keep only the first-k
emerged subwords while training the tokenizer,
where k = |V ′|. In this way, the size of the vo-
cabulary and word embeddings vector remains the
same as the corresponding semantically grouped
models, yet each embedding only corresponds to a
single subword as the original LM.

2.2 Cross-lingual Subword Alignment
(CLSA)

Other than running K-Means on the off-the-shelf
word embedding, we investigate manually align-
ing the embedding of subwords across different
languages. Specifically, we gather cross-lingual
word pairs from the bilingual dictionaries (i.e.,
MUSE; Conneau et al., 2017; PanLex4) and the
concept lists of multilingual words (i.e., Concepti-
con; List et al., 2016; ColexNet; Liu et al., 2023).
We filter the words so that only the ones that are
tokenized into a single subword are preserved.
Then, the word embeddings are trained on InfoNCE
loss (Oord et al., 2018) with in-batch negatives.
Note that only the parameters of word embeddings
are used and updated in this operation, while the
rest of the models remain untouched. The training
configurations of the CLSA operation are provided
in Ap. 11, as well as the ablations on the source
datasets used for CLSA training.
3 We also investigate grouping based on bilingual lexical
mappings in pilot studies. See results comparison in Ap. F.
4 https://panlex.org/

2.3 Dimension Reduction (DR)

Section 4.2 involves experiments that reduce the
dimension of word embedding, where we simply
remove the final D − d dimensions of the word
embeddings to form the new word embeddings
E
′
d ∈ R(|V |,d) (d < D), and pad each embedding

vector with zero on the fly. Note that the positional
and token-type embeddings are not affected by this
operation. While there are alternative options to
reduce the word embeddings parameters, we adopt
DR for its simplicity and to minimize the change in
model architecture. Due to its great modifications
to the word embedding, this operation is always
followed by continual pretraining (Section 2.4).

2.4 Continual Pretraining

The above operations may lead to a potential mis-
match between the word embeddings and the rest
of the model parameters. To fix the mismatch, we
continually pretrain the entire LM using Masked
Language Modeling (MLM) objectives to align the
updated embedding and language model parame-
ters (Devlin et al., 2019). All continual pretraining
uses Wikipedia data of 28 languages,5 where the
languages are selected based on the coverage of
downstream tasks. Details on the configurations
are provided in Ap. A.

3 Downstream Tasks Evaluation

All configurations are evaluated on five multilin-
gual downstream tasks, where four are classifica-
tion and one is embedding. The classification tasks
include word-level understanding, sentence-level
understanding, and passage reranking, whereas the
embedding task include passage retrieval. All eval-
uation datasets cover at least 10 diverse languages.
See Table 1 for datasets details. We hope these pro-
vide a comprehensive evaluation regarding the task
nature, the model structures, and the languages.

5 ar, bg, bn, de, el, en, es, fa, fi, fr, ha, hi, id, ig, ja, ko, lg, ru,
rw, sw, te, th, tr, ur, vi, wo, yo, zh

https://panlex.org/
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Figure 3: Results of mBERT with vocabulary and embeddings after semantic grouping (SG) or simply reduced
size (First-k). x-axis: the grouping ratio rG in log scale. The background colors indicate the relvative performance
to the oracle results, i.e., continual pretrained mBERT with full vocabulary, indicated by the green dashed lines on
top. green: >90%, yellow: 70%–90%, red: 50%–70%. The scores of First-k at rG = {5%, 10%} are skipped in
the figures as they greatly skew the y-axis.
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Figure 4: Results of mBERT after semantic grouping (SG) with and without applying cross-lingual subword align-
ment (CLSA). Background colors design are identical to Figure 3.

MasakhaNER (Adelani et al., 2021) is a named
entity recognition (NER) benchmark including 10
under-represented African languages. We use the
version 1.0 in this work.

TyDiQA-GoldP (Clark et al., 2020) is the gold
passage task of TyDiQA (Clark et al., 2020), a
question answering (QA) dataset that includes 11
topologically different languages. It requires to
predict the correct answer from the gold answer
passage. We refer to it as TyDiQA for simplicity.

XNLI (Conneau et al., 2018) is a natural language
inference (NLI) dataset that extend the development
and test sets of MultiNLI (Williams et al., 2018) to
15 diverse languages.

MIRACL (Zhang et al., 2023) is a monolingual
information retrieval dataset that provides train-
ing data for 16 diverse languages and evaluation
data for additional 2 languages. Two tasks are per-
formed on MIRACL: passage retrieval and passage
reranking, which fall under embedding and classi-
fication tasks respectively. In the rest of the paper,
MIRACL refers to the passage retrieval task and
MIRACL (rerank) refers to the passage reranking
task. We use the classic DPR (Karpukhin et al.,
2020) and monoBERT (Nogueira and Cho, 2019;
Nogueira et al., 2019) models for each task.

4 Results and Analysis

4.1 Semantic Grouping (SG)

Figure 3 shows the results of applying SG on
mBERT (Devlin et al., 2019) to different degree of
grouping ratio rG (x-axis). The backgrounds are
divided into different colors to highlight the range
of the relative performance to the oracle results,
i.e., the original mBERT with continual pretrain-
ing applied. Each point in the figures shows the
average score over all the languages under the cor-
responding configuration.6

The semantically-similar subwords could share
the same embeddings to a large degree. On the
classification tasks (the left four sub-figures), ap-
plying the SG alone (the blue dashed lines) could
already preserve over 90% performance on the
downstream tasks with 10% original vocabulary
size. After applying continual pretraining (the blue
solid lines), the same level of performance (> 90%)

∗ Due to space limit, Section 4 only provides visualization of
all the results, where the numerical scores could be found in
Ap. G, Table 5.
6 We investigate the impact on each single language. While
the overall trend per language is similar, we do not observe a
consistent impact over languages across different benchmarks.
See discussion in Ap. C.



could be preserved with only 5% original vocab-
ulary size. The embedding task (the rightmost
sub-figure) is comparatively more sensitive to the
semantic grouping, yet still maintains over 85% ef-
fectiveness with 20% original vocabulary size after
the continual pretraining. The different behaviors
suggest that the classification tasks may require
only coarse semantic representations to make the
prediction, while the embedding tasks require more
fine-grained lexical representations to produce rea-
sonable sentence- or passage-level representations.

Comparison with First-k. Figure 3 also shows
the results of First-k (the red lines) described in
Section 2.1. This is to compare SG with mLMs
that have the same number of word embedding en-
tries by adpoting a smaller vocabulary size. As the
figure shows, while First-k could still share similar
performance as SG at rG = 40%, removing more
subwords from the vocabulary deteriorates the per-
formance drastically on all downstream tasks, re-
gardless of whether continual pretraining is ap-
plied. This pair of results suggests that while sim-
ply reducing the number of subwords has a detri-
mental effect on the mLMs capacity, which echoes
previous findings on the vocabulary size (Conneau
et al., 2020; Liang et al., 2023; Ali et al., 2024; Tao
et al., 2024), not all subwords requires an unique
representation. In other words, the effect of the
number of the word embedding entries should be
disentangled from the size of the vocabulary.

Enhance the semantic similarity via post-hoc
operations. In above results, the semantic group-
ing is applied on the off-the-shelf mLMs, exploit-
ing the spatial structure of the untouched word
embedding. Could the semantic similarities be
further enhanced by post-hoc operations on the
mLMs? We show that this direction is possible and
promising, using the cross-lingual subword alig-
ment (CLSA) operation as an example.

Figure 4 compares the results of applying SG
on mBERT with and without CLSA, where the or-
ange lines are consistently higher than or similar to
the blue ones regardless of whether the model has
been continually pretrained. On certain datasets,
e.g., XNLI and MIRACL, CLSA brings visible
improvement at all grouping ratios, whereas the
improvement is more significant at lower grouping
ratios on the other datasets. This shows that the
semantic similarity among the subwords has room
to be improved by post-hoc operations.7

7 It is worth noting that, CLSA is not being proposed as a

4.2 Eliminating the Confounding Effect of
Embedding Parameters

While applying the SG, the number of the word
embedding parameters is also reduced by the same
degree. Does the changes on effectiveness truly
reflect the semantic grouping, or that any form
of word emebdding parameters reduction have the
same effect? To address the concern, we apply
SG on word embeddings with reduced embedding
dimension via the dimension reduction (DR) oper-
ation, to see whether the effectiveness diminishes
as the embedding parameters are reduced. We first
show that SG maintains the same level of effec-
tiveness on the reduced dimensions. Moreover,
while the embedding dimension has reached its
limit, SG could further push down the overall word
embedding parameters to a level that could not be
achieved by reducing the word embedding dimen-
sion alone.

SG maintain same level of effectiveness with re-
duced embedding dimensions. Figure 5 shows
the results of SG with three word embedding di-
mensions d ∈ {768, 128, 32}, with both CLSA and
continual pretraining applied. While DR reduces
the effectiveness of the mLM with full vocabulary,
the slope of the curve flattens as the dimension re-
duces, indicating less relative performance drop on
the downstream tasks at lower embedding dimen-
sion d. Speicifically, the SG results on embedding
dimension d = 32 is on par and even outperform
the results on the initial dimension d = 768 as vo-
cabulary size reaches 5%. These results show that
the effect of SG is largley independent from the
embedding parameters.

SG achieves lower number of embedding pa-
rameters beyond dimension reduction. Apart
from the above observation, Figure 6 unites the
results of SG at embedding dimension d = 32 and
DR from the perspective of the total number of
word embedding parameters (x-axis). The brown
lines show the DR results of reducing the embed-
ding dimension d from 768 to {2, 8, 32, 128} with

general solution but only as a proof-of-concept: As mentioned
in Section 2.2, CLSA is applied on subwords that are complete
words by themselves but not the partial words, which limits
the coverage on the entire vocabulary intrinsically. For exam-
ple, only 45.4% of the subwords in the mBERT vocabulary
are covered in the CLSA training set. Instead of promoting
the CLSA method itself, we use its success in enhancing the
semantic similarity as a proof of concept to show that further
post-hoc operations on the word embedding could be benefi-
cial. More effective methods could be studied and applied in
a drop-in manner to achieve better semantic grouping results.
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level of word embedding parameters size. x-axis: the ratio of the word emebdding size after DR or SG in log scale.
The brown lines: DR with dimension d ∈ {2, 8, 32, 128, 768} and full vocabulary, corresponding to embedding
parameters ratio of {0.3%, 1.0%, 4.2%, 17%, 100%}. The yellow lines: SG with dimension d = 32 and vocabulary
grouping ratio rG ∈ {5%, 10%, 20%, 40%}, corresponding to embedding parameters ratio of {0.21%, 0.42%,
0.84%, 1.7%, 4.2%}. Background colors design are identical to Figure 3.

the vocabulary untouched, yielding to embedding
parameters ratio of {0.3%, 1.0%, 4.2%, 17%}.
With DR, the performance on all downstream tasks
is largely preserved until dimension d = 32 and
drop sharply once the dimension falls beneath it,
indicating that saving the embedding parameters
via dimension reduction has reach its limit.

On the other hand, the yellow lines shows the
models starting from word embedding with dimen-
sion d = 32 (thus 4.2% embedding parameters)
and then applied SG with grouping ratio rG from
40% to 5%,8 yielding to embedding parameters
ratio from 4.2% to 0.21%. The effectiveness dif-
ferences between the two lines are clear: while fur-
ther reducing the embedding parameters by sim-
ilar scale, SG could largely preserve the down-
stream performance whereas DR fails miserably.
This strongly informs that SG is complementary to
DR on their effect towards the word embedding pa-
rameters, and that it may provide a new perspective
on understanding the necessary parameters in the
word embeddings.
8 Identical to the yellow lines in Figure 5.

4.3 Backbones

Experiments above are all based on mBERT (De-
vlin et al., 2019), how would the findings gen-
eralize to mLMs with different tokenization al-
gorithm, vocabulary size, model size, and pre-
training corpora? We select three additional mLMs
to address the above concern: XLM-R (base),
XLM-R (large) (Conneau et al., 2020), and XLM-
V (base) (Liang et al., 2023), which all deploys
ULM (Kudo and Richardson, 2018) to contruct
the vocabulary, and pretrained on CC100, but dif-
fer from each other in model size or tokenization
pre-processing, vocabulary allocation and size.

Results of SG are shown in Figure 7, where the
background colors are removed as different back-
bones do not share the same oracle results. In-
stead, we compare the results with mBERT (the
blue lines) to see whether they follow similar trend
as more subwords are semantically grouped. Over-
all, the slopes of the four curves are similar on all
five benchmarks, indicating that the findings are
likely to generalize over different multilingual LMs
with different tokenizers, and model sizes.
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Figure 7: Results of SG on multiple backbones, all with CLSA applied and no continual pretraining. All models
shows similar trend regarding semantically grouped subwords.

4.4 Semantic Similarities Categories among
the Grouped Subwords

This section aims to provide some intuitions on
how “semantically similar” the grouped subwords
are. Figure 8 provides examples of the semantic
groups based on model with embedding dimension
d = 768 and CLSA applied.9

Among the eight displayed example groups,
six of them are chosen from the Swadesh list,
covering pronouns, nouns, adjectives, preposi-
tions, and verbs; the other two are “NUMBERS”
and “PUNCTUATIONS”, where we observed strong
clustering during manual inspection. We observe
multiple patterns of semantic similarities among
the grouped subwords:
1. semantically identical or similar words across

languages: mother vs. mẹ, they vs. 그들은.10

2. semantically related words from the same lan-
guage: at vs. on, heavy vs. hard.

3. semantically related words across languages:
heavy vs. intenso, who vs. που.11

4. numbers in similar range: the cluster numbers
ranging from 60 to 100.

5. punctuations: ., ;!

We also notices some undesired behavior among
the grouped subwords: The current methods are
limited in the polysemous situation and controling
the desired semantic per group: For example, in the
group of “I”, while the desired semantic is the first
person singular pronouns in different languages,
the group mainly includes the single letter such as
“A”, “B”, “C” on mLMs with d = 768, as shown
by Figure 13 in Ap. H, suggesting that future work
is necessary to better handle such cases.

9 Only parts of the subwords are displayed per group for space
limit. For the full list of subwords, please refer to Ap. H and
Figure 13.
10 mẹ: “mother” in Vietnamese;그들은: “they” in Korean.
11 intenso: “intense” in Spanish; που: “where” in Greek.

mother
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mother
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this

heavy
at

they

numbers

live

Figure 8: Eight “semantic tokens” formed by grouped
subwords on mBERT word embedding with dimen-
sion d = 768 and CLSA applied. The labels out-
side the circles are either the keyword of the cluster,
or “NUMBERS”/“PUNCTUATIONS” if the cluster is
a collection of numbers/punctuations.

4.5 Cross-lingual Transfer

Lastly, we investigate that how the semantic group-
ing affects the cross-lingual transferability from
English to other languages. We evaluate on four of
the above tasks, where MasakhaNER is skipped as
English training data is not available.

Surprisingly, on two classification tasks: Ty-
DiQA and MIRACL (rerank), the zero-shot results
at grouping ratio rG = 40% are on par or even
better than the oracle results, where SG is not ap-
plied. These might suggest that the fine-grained
subword-level semantics serve as the anchors for
cross-lingual transferring in some circumstances.

On the other hand, the cross-lingual transferring
on embedding tasks is more challenging especially
with the course-grained semantics. While the zero-
shot results on MIRACL at rG ∈ {20%, 40%} are
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Figure 9: Results when transferring from English to
other languages on four benchmarks, with CLSA and
continual pretraining applied. MasakhaNER is skipped
as English training data is not available. Background
colors design are identical to Figure 3. The dashed
green line denotes the zero-shot performance without
semantic grouping.

still in the reasonable range (i.e., more than 70%
of the relative zero-shot effectiveness), the relative
zero-shot falls under 50% when rG further drops.
This echoes with the in-domain results above that
embedding tasks requires a more fine-grained se-
mantic information from the subwords.

5 Related Works

Semantic Similarities in Word Embedding. The
semantics latent knowledge in word embeddings
have been leveraged to adapt the pretrained multi-
lingual LMs to unseen languages or scripts (Pfeiffer
et al., 2021; Wang et al., 2022; Liu et al., 2023).
While it has been shown that the shared seman-
tics assist the language transfer, it was unclear how
much the semantics alone could achieve compared
to the full-fledged models.

Parameter Redundancy and Model Compres-
sion. Dalvi et al. (2020) study the layer and neu-
ron redundancy on BERT and XLNet, and many
works proposed to compress the overall model
size via pruning (Gordon et al., 2020; Ashkboos
et al., 2024; Yang et al., 2024), knowledge distil-
lation (Turc et al., 2019; Sanh et al., 2019), and
quantization (Shen et al., 2020). From the per-
spective of model compression, our work provides
a new view on the word embeddings redundancy
from shared semantics among subwords.

Bilingual Lexicon Induction and Word Align-
ment. The Cross-lingual Subword Alignment
(CLSA) operation is related to the task of Bilin-
gual Lexicon Induction (BLI) and Word Alignment.
BLI aims to induce the equivalent translation in
language L2 given a word in language L1 (Artetxe
et al., 2016; Conneau et al., 2017; Wang et al.,
2020; Shi et al., 2021). CLSA is similar to BLI
in terms of focusing on uncontextualized cross-
lingual words pairs, but different in that it aims
to align the word pairs in the embedding space
and targets on not only bilingual but also multilin-
gual words. Word alignment aims to find bilingual
word pairs in parallel sentences (Cao et al., 2020;
Jalili Sabet et al., 2020). While the name is sim-
ilar, the goals are different: In addition to above
differeces with BLI, CLSA focuses on uncontextu-
alized cross-lingual word pairs and does not involve
parallel sentences.

Word Sense Clustering. The Semantic Grouping
(SG) operation is also related to the task of word
sense clustering. While with similar objectives,
the word sense clustering was mainly constructed
based on the corpora statistics (Snow et al., 2007),
while the SG operation is based on the word em-
beddings similarity.

6 Conclusion

Inspired by the robustness of human perception to
the semantically similar words, this work measures
the role of shared semantics in the subwords of
the multilingual word embeddings, finding that the
general shared semantics could get the models a
long way in understanding languages and making
predictions. Additional experiments shows that the
observations generalize across mLMs with differ-
ent tokenization algorithm, vocabulary size, model
size, and pre-training corpora. Inspections on the
grouped subwords show that they exhibit multiple
patterns of semantic similarity, including synonyms
and word translations in many languages.

Not only the subword-level semantics is promi-
nant in in-domain language understanding, in some
cases, it also serves as the anchors of cross-lingual
transferring and thus potentially a promising di-
rection of bridging the understanding of different
languages. We hope that this work sheds lights
on understanding the multilingual vocabulary and
word embeddings from the semantic perspective,
and spur further research on the subword-level in-
formation sharing across languages.



Limitations

The scope of Semantics. This work only discuss
the application scenario where pragmatics are not
heavily involved. The other situations such as po-
etry, humour, sentiment analysis intuitively would
require not only the semantic meanings, but also
exquisite understanding of the words nuances, yet
out of the scope of this work. Similarly, the work is
probably not applicable to figurative language such
as metaphor, irony, etc.

Word-level Semantics Only. One of the major
limitation of this work is not consider the phrase-
level semantics in the study.

Encoder-only tasks. As a natural limitation of the
semantical grouping method itself, it is not straight-
forward to apply the method to decoder-only mod-
els since it forbit predicting explicit subword at
each decoding step. Thus only the encoder-only
tasks are evaluated in this work. Further design and
exploration would be required to apply the method
to decoder-only models.

Results on Embedding Tasks. Results show that
the embedding tasks are more sensitive to the se-
mantical grouping compared to the classification
tasks. More questions could be raised from the
phenomenon: does it make embedding task a better
evaluation metrics for the semantical grouping, or
that simply the embedding task require more fine-
grained understanding of the subword information?
How much could be embedding benefit if the se-
mantical grouping algorithm could be improved?
We believe that these are important questions to
further understand effectiveness and limitation of
this direction. Limited by the paper capacity, we
leave them for future exploration.
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mNER TyDiQA XNLI MIRACL
rerank retrieval

epochs 50 3 2 5 40
warmup ratio – – – 0.1 0.1
batch size 64 128 64 32 256
learning rate 5e-05 5e-05 5e-06 5e-06 1e-05
adam β1 0.9 0.9 0.9 0.9 0.9
adam beta_2 0.99 0.99 0.99 0.99 0.99

Table 2: Downstream task traning configurations.
mNER: MasakhaNER

A Training and Evaluation
Configurations

Continual Pretraining. All continual pretraining
in this work share the same hyperparameters. Lan-
guage models are trained on the MLM objective for
25,000 steps, with a batch size 1024 and a learning
rate of 1e − 4. We randomly masked 15% of the
tokens. The hyperparameters were chosen follow-
ing the initial pretraining configurations of Devlin
et al. (2019).
Downstream Task. For each task, we use all the
availble training data provided by each dataset. The
training configurations are provided in Table 2.

B Alignment Datasets

Figure 11 compares the impact of different word
alignment datasets on the downstream tasks. All
experiments are followed by rG = 5% semantic
grouping and continual pretraining. On all down-
stream datasets, we compare the results of using
four groups of alignment data:

1. MUSE
2. MUSE and Round-Trip
3. MUSE and PanLex
4. MUSE, PanLex, Colex, and Concepticon

where Round-Trip are the pair of word that are the
nearest neighbors to each other in the embedding
space, serving as a regularization in the CLSA pro-
cedure. We found that scenario 4 gives the best
overall results, and thus use it as our default con-
figuration.

C Impact on Individual Languages

This section explores whether the langauges are
consistently affected across tasks by the semantic
grouping. To this end, we compare the effective-
ness drop on the overlapping languages of each pair
of benchmarks, and compute their Pearson corre-
lation coefficient. Five pairs of benchmarks are
selected for analysis, which fall under 3 groups:

TyDi QA vs MIRACL cross-encoder

XNLI vs MIRACL cross-encoder 

MIRACL bi- vs cross-encoder

TyDi QA vs MIRACL (cross)

XNLI vs MIRACL (cross)

 MIRACL (bi) vs XNLI

 MIRACL (bi) vs TyDi QA

MIRACL (bi) vs (cross)

TyDi QA vs MIRACL (cross)

XNLI vs MIRACL (cross)

MIRACL (bi) vs (cross)

TyDi QA vs MIRACL (cross)

XNLI vs MIRACL (cross)

 MIRACL (bi) vs XNLI

 MIRACL (bi) vs TyDi QA

MIRACL (bi) vs (cross)

TyDi QA vs MIRACL (cross)

XNLI vs MIRACL (cross)

 MIRACL (bi) vs XNLI

 MIRACL (bi) vs TyDi QA

MIRACL (bi) vs (cross)

I.

II.

III.

Figure 10: Pearson correlation between the relative per-
formance drop per language between a pair of bench-
marks. Each row indicates a pair of benchmarks, where
(bi) refers to retrieval (which uses bi-encoder) and
(cross) refers to reranking (which uses cross-encoder).
Each column indicates a semantic grouping rate rG.
Left: Pearson correlation coefficient ρ; Right: corre-
sponding one-tail p-values.

I. different task types and data sources:
(a) MIRACL (retrieval) vs. XNLI
(b) MIRACL (rerank) vs. TyDiQA

II. different tasks types, same data source:
MIRACL (retrieval) vs. MIRACL (rerank)

III. same task type, different data sources:
(a) MIRACL (rerank) vs. XNLI
(b) MIRACL (rerank) vs. TyDiQA

The benchmark selection is mainly under the con-
sideration of the number of overlapping languages:
MasakhaNER have no overlapping languages with
the other datasets, and TyDiQA and XNLI only
have 3 overlapping languages.

Figure 10 shows Pearson correlation coefficient
ρ (left) and the corresponding p-values (right) in
two heatmaps. In two heatmaps, higher saturation
indicates higher ρ or smaller p-values, respectively,
which together indicates stronger correlations in
higher confidence. Each row corresponds to a pair
of benchmarks, and each column corresponds to
a semantic grouping ratio rG. The three blocks in
the figure corresponds to the three groups defined
above from top to bottom.

Overall, we observe consistent trend on the two
heatmaps, where the top-2 rows are smaller in the
coefficient ρ (lighter color in the left heatmap)
and larger in p-values (darker color in the right
heatmap), and that the bottom-3 rows are larger
in the coefficient ρ and smaller in p-values. This
indicates that languages are affected similarly by
the semantic grouping when the benchmarks pair
share either the same data source (group 2) or the
task type (group 3). In contrast, the impact on the
languages is less consistent across benchmarks that
shares neither the task type nor the data source
(group 1).
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Figure 11: Comparison of alignment source dataset on downstream tasks. Each bar represents one alignment
dataset(s), where “mbert” is the baseline result when there is no alignment applied. The x-axis is the average score
on all languages per task.

d rG # Para (M) GPU Mem (G) steps / sec

768 5.0% 90 19.1 5.1
10.0% 95 39.8 2.6
20.0% 104 51.5 2.1
40.0% 123 74.9 2.1

100.0% 178 74.6 1.9

128 5.0% 86 19.1 5.2
100.0% 101 74.6 1.9

32 5.0% 86 19.1 5.3
100.0% 89 74.6 1.9

Table 3: Efficiency statistics of mBERT under SG and
DR, collected on a 80G A100 GPU during pretrain-
ing with batch size 128 per device. (green: best; red:
worse; yellow: neutral)

D Dissussion on Memory and Efficiency

This section discusses the effect of semantic group-
ing on the model size, and its memory usage and
training speed during the continual pretraining. Ta-
ble 3 shows above statistics of mBERT with rG ∈
{5%, 10%, 20%, 40%, 100%} with word emebd-
ding dimension d = 768, and rG ∈ {5%, 100%}
with d ∈ {128, 32}.12

Model Size. The model size are affected linearly
with the vocabulary size or the word embedding
dimension. As the word embedding initially takes

12Statistics of LMs with rG ∈ {10%, 20%, 40%} and d ∈
{128, 32} are similar to d = 768, thus skipped for simplicity.

over half of the total model parameters in mBERT,
grouping the subwords to 5% of the vocabulary size
brings visible savings on the overall model size,
from 178M to 90M.

Memory. We found that memory usage during
the pretraining could be largely saved via reduced
vocabulary size, but not the word embedding di-
mension. We explain it by that the memory usage
during the pretraining is bottlenecked by the acti-
vations, espcially the final token-level logit matrix,
whose size is solely determined by the vocabulary
size but not the word embedding dimension. As
a result, the memory savings from compact vo-
cabulary is prominent, from 74.6G to 19.1G when
reducing the vocabulary size from 100% to 5%,
while saving the word embedding dimension barely
changes the memory usage.

Training Speed. The trend of training speed is
similar to the memory usage, where saving the
word embedding dimension has negligible effect
on the training speed while saving the vocabulary
size has significant impact, from 1.9 to 5.1 steps
per second.

E Ablation on Distance Metric

We compare the resuls using cosine versus Eu-
clidean distance in Figure 12, where the results
shows that grouping on Euclidean distance greatly



Method rG nDCG@10

Oracle 100% 0.452

Grouping on MUSE (zh) 99.2% 0.357
Grouping on MUSE (5L) 92.1% 0.248
Grouping on MUSE (all) 86.2% 0.193

K-Means 40% 0.304

Table 4: Results on MIRACL (zh), comparing Group-
ing via Bilingual Lexicons vs K-Means. Models are
fine-tuned on MS MARCO, without CLSA or contin-
ual pretraining.

underperformance cosine distance especially at
higher dimension (d = 768). We interprete this as
that the vector norm is an undesired feature when
pursuing the semantic similarity between the sub-
words, which amplifies the distance between se-
mantic similar subword at high dimension.

F Grouping via Bilingual Lexicons

As an intuitive alternative to grouping via K-
Means, we explored to group the subwords via the
ground-truth bilingual lexicons in the preliminary
experiments, finding that it has limited coverage
on the subwords, thus grouping ratios, and also un-
derperforming the K-Means-based grouping. See
Table 4 for the results.

G Numerical Results of Experiments in
Figure 2–6

Table 5 presents the numerical results of experi-
ments in Figure 3, 4, 5, 6, and 7.

H More Inspection Examples

Figure 13 shows more examples of the grouped
subwords additional to Figure 8.
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Figure 12: Comparison of L2 versus cosine distance
when using K-Means to group the subwords.



d rG w/ CLSA? w/ PT? MasakhaNER TyDiQA XNLI MIRACL (cross-) MIRACL (bi-)
F1 perc F1 perc Acc perc nDCG@10 perc nDCG@10 perc

768 100% – × 0.735 98.7% 76.9 99.9% 0.750 99.9% 0.613 99.5% 0.586 98.7%
768 100% – X 0.745 100.0% 77.0 100.0% 0.751 100.0% 0.616 100.0% 0.594 100.0%

Figure 3
768 40% × × 0.704 94.5% 74.6 96.9% 0.725 96.5% 0.584 94.8% 0.493 83.0%
768 20% × × 0.698 93.7% 72.6 94.3% 0.702 93.5% 0.553 89.8% 0.436 73.4%
768 10% × × 0.680 91.3% 71.3 92.6% 0.678 90.3% 0.523 84.9% 0.372 62.6%
768 5% × × 0.659 88.5% 70.2 91.2% 0.650 86.6% 0.495 80.4% 0.306 51.5%
768 40% × X 0.727 97.6% 76.3 99.1% 0.730 97.2% 0.597 96.9% 0.533 89.7%
768 20% × X 0.711 95.4% 75.1 97.5% 0.713 94.9% 0.585 95.0% 0.494 83.2%
768 10% × X 0.706 94.8% 73.7 95.7% 0.690 91.9% 0.568 92.2% 0.437 73.6%
768 5% × X 0.694 93.2% 71.8 93.2% 0.662 88.1% 0.549 89.1% 0.372 62.6%

Figure 4
768 40% X × 0.712 95.6% 74.7 97.0% 0.729 97.1% 0.580 94.2% 0.487 82.0%
768 20% X × 0.705 94.6% 73.0 94.8% 0.715 95.2% 0.563 91.4% 0.443 74.6%
768 10% X × 0.686 92.1% 71.3 92.6% 0.697 92.8% 0.542 88.0% 0.389 65.5%
768 5% X × 0.679 91.1% 70.7 91.8% 0.677 90.1% 0.516 83.8% 0.330 55.6%
768 40% X X 0.724 97.2% 76.5 99.4% 0.741 98.7% 0.602 97.7% 0.540 90.9%
768 20% X X 0.722 96.9% 74.8 97.1% 0.726 96.7% 0.590 95.8% 0.506 85.2%
768 10% X X 0.714 95.8% 74.1 96.2% 0.707 94.1% 0.570 92.5% 0.442 74.4%
768 5% X X 0.691 92.8% 73.0 94.8% 0.690 91.9% 0.566 91.9% 0.398 67.0%

Figure 5
128 40% X X 0.717 96.2% 75.2 97.7% 0.725 96.5% 0.591 95.9% 0.509 85.7%
128 20% X X 0.714 95.8% 74.5 96.8% 0.721 96.0% 0.585 95.0% 0.469 79.0%
128 10% X X 0.698 93.7% 73.3 95.2% 0.708 94.3% 0.577 93.7% 0.451 75.9%
128 5% X X 0.695 93.3% 72.9 94.7% 0.694 92.4% 0.568 92.2% 0.415 69.9%
32 40% X X 0.712 95.6% 74.7 97.0% 0.729 97.1% 0.580 94.2% 0.487 82.0%
32 20% X X 0.705 94.6% 73.0 94.8% 0.715 95.2% 0.563 91.4% 0.443 74.6%
32 10% X X 0.686 92.1% 71.3 92.6% 0.697 92.8% 0.542 88.0% 0.389 65.5%
32 5% X X 0.679 91.1% 70.7 91.8% 0.677 90.1% 0.516 83.8% 0.330 55.6%

Figure 6
128 100% – X 0.737 98.9% 76.1 98.8% 0.741 98.7% 0.605 98.2% 0.564 94.9%
32 100% – X 0.735 98.7% 76.9 99.9% 0.750 99.9% 0.613 99.5% 0.586 98.7%

8 100% – X 0.639 85.8% 47.8 62.1% 0.626 83.4% 0.414 67.2% 0.276 46.5%
2 100% – X 0.374 50.2% 29.4 38.2% 0.333 44.3% 0.123 20.0% 0.064 10.8%

Figure 7: XLM-R base
768 100% X × 0.814 100.0% 78.2 100.0% 0.779 100.0% 0.611 100.0% 0.558 100.0%
768 40% X × 0.783 96.2% 75.5 96.5% 0.753 96.7% 0.584 95.6% 0.484 86.7%
768 20% X × 0.739 90.8% 73.1 93.5% 0.735 94.4% 0.556 91.0% 0.431 77.2%
768 10% X × 0.717 88.1% 70.8 90.5% 0.701 90.0% 0.516 84.5% 0.374 67.0%
768 5% X × 0.695 85.4% 66.8 85.4% 0.669 85.9% 0.490 80.2% 0.314 56.3%

Figure 7: XLM-R large
1024 100% X × 0.792 100.0% 80.4 100.0% 0.844 100.0% 0.645 100.0% 0.598 100.0%
1024 40% X × 0.792 100.0% 79.6 99.0% 0.809 95.9% 0.624 96.7% 0.547 91.5%
1024 20% X × 0.755 95.3% 78.3 97.4% 0.762 90.3% 0.595 92.2% 0.442 73.9%
1024 10% X × 0.715 90.3% 75.3 93.7% 0.716 84.8% 0.557 86.4% 0.384 64.2%
1024 5% X × 0.722 91.2% 71.7 89.2% 0.668 79.1% 0.531 82.3% 0.304 50.8%

Figure 7: XLM-V base
768 100% X × 0.828 100.0% 79.2 100.0% 0.792 100.0% 0.621 100.0% 0.600 100.0%
768 40% X × 0.773 93.4% 75.2 94.9% 0.755 95.3% 0.582 93.7% 0.463 77.2%
768 20% X × 0.719 86.8% 73.8 93.2% 0.722 91.2% 0.553 89.0% 0.398 66.3%
768 10% X × 0.707 85.4% 71.7 90.5% 0.690 87.1% 0.522 84.1% 0.327 54.5%
768 5% X × 0.676 81.6% 68.8 86.9% 0.656 82.8% 0.497 80.0% 0.277 46.2%

Table 5: Numerical results of experiments in all figures, where the each number is the averaged results of all
languages per benchmark. We skip the per-language score due to the space limit. d: word embedding dimension;
rG: grouping ratio; “cross-”: cross-encoder “bi-”: bi-encoder perc: the relative performance to the oracle results
(i.e., the second row for mBERT, the correponding 100% rows for the other backbones) The background colors
indicate the relvative performance to the oracl results: green: >90%, yellow: 70%–90%, red: 50%–70% and the
dark red color means <50%. Better viewed in colors.
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I

A, B, C, CH, E, H, I, M, N, O, Q, S, V, X, a, d, f, 
h, j, m, n, p, pm, t, ös, Α, Ο, А, О, м, о, अ, অ, 

আ, এ, అ, ఆ

##ই, I, ich, mu, sì, yo, yá, бы, من, میں, ہی, तब, तो, 
ह , ত, তখন, তা, ఊ, 予, 俺, 汝, 私, 저

I, Ich, Ja, ich, lord, me, mich, minut, mir, mis, 
mo, my, més, mí, self, sí, tôi, 们, 俺, 分, 別, 我, 
来, 汝, 私

they

They,chúng,ellas,elles,ellos,eux,heidän,hulle,
họ,ihnen,ils,leur,leurs,loro,mereka,niiden,
niitä,onlar,onlara,onları,onların,their,them,
they,αυτών,τους,им,их,они,тях,آنان,آنھا,ایشان,

उनक ,उनके,उनको,वे,এেদর,তােদর,তারা, ా ,그들은,

그들의

Ihre,Leur,Sus,Their,chúng,deres,elles,ellos,
euren,eux,heidän,ih,ihnen,ihre,ihrem,ihren,
ihrer,ihres,ils,its,leur,leurs,loro,niiden,niitä,
oni,onlar,onlara,onları,onların,su,sus,suya,
suyos,their,them,they,τους,ги,ими,их,они,
свои,тях,آنان,آنھا,ان,ایشان,ھم,उनक ,उनको,उ ह,ये,

এেদর,তােদর, ా , ార ,그녀의,그들은,그들의

Elles,Lui,They,chúng,dier,elles,estén,eux,,ھم##
hänelle,hänellä,ihnen,ils,leur,niitä,noi,onlar,
onlara,onları,them,they,οποίες,τους,ги,ими,их,

उनक ,उ ह,তােদর,ఇ них,они,тях,آنان,آنھا,ایشان,ھم,,

ార ,これに,그들은

this

aquest, aquesta, cette, diese, diesem, dieser, 
dieses, esta, este, esto, eta, ini, này, questa, 
questo, this, tämä, tämän, tätä, ésta, éste, 
тази, това, този, эта, этим, это, этот, ,آن, این 
এই, এ ,ذلك, ھذا, ھذه , ఇ , ఈ, この, その, 之, 其, 当, 

此, 这, 這

##この, ##その, Esta, This, diese, este, this, 
tämän, tätä, тази, тези, това, този, эта, эти, 
этой, этот, эту, ఈ, この, 斯, 此, 该, 这

Cette, Diese, Dieser, Esta, Estas, Meine, This, 
ces, diese, dieser, dieses, estas, este, esto, 
estos, ini, this, tämä, tämän, tätä, Эта, Эти, 
тази, тези, това, този, эти, этот, эту, وھذه, ఈ, 

この, これらの , 这

who

koji, mà, que, qui, that, who, yang, što, που, 
което, които, който, която, кој, что, што, 
що, אשר, جو, کھ, जो, ক, যা, だと, 하는

Who, habían, jotka, kdo, ki, koga, quién, who, 
Кто, Что, кого, кое, кои, кто, що, کھ, িযিন, 誰, 
谁

cual, cuales, joita, joka, jota, jotka, lesquels, 
mitä, mà, que, qui, quien, quienes, welche, 
welcher, welches, which, who, yakni, yang, 
οποία, οποίο, οποίος, который, ,التي, الذي, جو, والتي 
िजसे, जे, जो, だと ,والذي, کھ

heavy

Heavy, ağır, berat, ciddi, difficile, difficult, 
difícil, dura, dure, duro, greu, hard, heavy, khó, 
leve, massive, nhẹ, nặng, pesante, schwer, 
schwere, schweren, seria, serious, seriously, 
severe, teško, zwaar, теж, 艱, 重, 难

Heavy, ağır, berat, deras, gravemente, heavy, 
leve, massive, nặng, pek, pesante, schwer, 
schwere, schweren, seriously, starke, teško, 
большим, теж, شدید, مشکل, گرم, 沉, 重, 큰

Greatest, Heavy, agir, ağır, deras, forte, giảm, 
heavy, intensa, intense, intenso, massive, 
nặng, pesante, plein, profonde, schwere, 
schweren, starke, большим, شدید, ả, ố, 重, 커, 큰

fire

Feuer, Smoke, dust, feu, fire, fires, fogo, fuego, 
fuoco, humo, incendie, incendio, lửa, smoke, 
tobacco, آتش, النار, 拂, 炎, 烟, 煙, 熏, 燻, 菸, 雾, 
霧

Brand, Feuer, Fire, Fuego, ag, api, fai, feu, fire, 
fuego, incendio, llama, lửa, огонь, آتش, النار, 火, 
炎, 焔

##selen, ##サス, Fire, Fuego, Riot, bão, 
earthquake, fire, fuego, hurricane, incendio, 
lửa, neste, storm, terremoto, trận, tsunami, 
炎, 焔 ,النار

mother

Mama, Mother, Mutter, ibu, ibunya, madre, 
majka, mama, mater, moeder, mother, mãe, 
mère, mẹ, nurse, µητέρα, Мать, майка, 
матери, мати, мать, мајка, أم, ام, مادر, মা, 媽, 嬤, 
嬷, 母, 어머니

Mama, Mother, Mutter, grandmother, ibunya, 
madre, majka, mama, mother, mãe, mère, 
nang, tante, µητέρα, Мать, майка, матери, 
мать, мајка, مادر, 亲, 妈, 婆, 媽, 嬤, 嬷, 母, 어머
니

Father, Maker, Mama, Mother, Robin, mother, 
Мать, баща, майка, матери, мать, مادر, 娃, 母, 
父, 어머니

live

Lebens, Live, alive, hidup, leben, lebenden, 
lebt, lebte, lebten, levde, levende, live, lived, 
lives, living, sống, viva, vivant, vive, viven, 
vivent, vivió, vivo, vivos, vivre, vécu, žive, živi, 
жив, живее, живи, تعیش, حي, زنده, ライブ

Lebens, Live, alive, asui, elää, habita, hidup, 
leben, lebenden, lebt, lebte, lebten, live, lived, 
living, rege, sağ, sống, vital, viva, vivant, vive, 
viven, vivent, vivere, vivien, vivir, vivió, vivo, 
vivos, vivre, wonen, Žije, žije, žive, živi, жив, 
живе, живее, живеят, живи, жил, жили, 
существование, חיים, تعیش, حي, یعیش, ライブ, 寿, 
活

elää, errichten, existieren, existir, ganado, 
hidup, leben, lebten, live, living, pequeños, 
reside, resides, residing, sống, vivant, vive, 
viven, vivent, vivir, vivo, vivos, vivre, yaşayan, 
život, живеят, живи, существование, ,تعیش 
住 ,یعیش

at

at,au,auf,aus,by,dans,en,for,für,in,into,na,
nach,on,onto,over,por,på,sobre,sur,to,trên,tại,
upon,vào,với,with,à,în,από,για,εν,επί,κατά,µε,
σε,στα,στη,στην,στις,στο,στον,στους,в,во,във,за,
из,к,към,на,над,по,с,со,у,با,برای,در,ใน,ở,で,に,
を,在,에

##ที่,aikaa,an,at,kepada,nơi,terhadap,untuk,
έτος,κατά,στη,στις,στο,στον,στους,близ,بر,ओर,

সাল,ఏ ,వద,సంవత రం,จาก,ณ,ที่,เมื่อ,แหง,ใน,デ,

在,에,에서

at,atas,dalam,dans,dessus,in,inside,ninu,trên,
tại,untuk,upon,varten,κατά,προς,σε,στα,στη,
στην,στις,στο,στον,στους,близ,в,във,на,свыше,
согласно,بر,จาก,ณ,เมื่อ,ใน,にかけて ,まで,在,에,
에서,위에,으로

80
63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 
91, 92, 93, 94, 95, 96, 97, 98, 99

65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 
93, 94, 95, 96, 97, 98, 99

66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 
94, 95, 96, 97, 98, 99
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Figure 13: More examples of the grouped subwords on mBERT with CLSA


